
Coherent states and classical limits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 3257

(http://iopscience.iop.org/0305-4470/27/9/035)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 21 (1994) 3257-3265. Printed in the UK 

Coherent states and classical limits 

Eckhard Meinrenken 
Fakulta f& Physik der UniversitZt Freibnrg, Hermann-Herder-Strasse 3, D-79104 Freiburg, 

Received 14 May 1993 

Abstract. It is explained, using a mherent states approach that classical minimal coupling in 
the form inmduced by Stemberg may be obtained as a classid limit from quantum minimal 
coupling. A similar procedure is used to exhibit Weinstein's symplectic struciure on the'space 
of  WKB amplitudes as a classical limit. 

1. Introduction 

It is a well known exaggeration that quantum mechanics, described by a Hilbert space 'H and 
a self-adjoint Hamiltonian I?, may be considered to be a special case of classical mechanics. 
In fact, taking o(u1,  R) = -Im (U,, u2) as a symplectic form on 'H, the quantum time 
evolution is generated by the classical Hamiltonian H(x) = I (xlalx) ,  and the commutator 
of two operators corresponds to the Poisson bracket of their respective Hamiltonians (see 
e.g. [ 11 p 460). Despite being rather useless for dealing with concrete problems, this may be 
one of the reasons why symplectic structures are so ubiquituous in physics: most reasonable 
physical theories are in some way linked to an underlying quantum theory, and sometimes 
the symplectic structure of the latter gives rise to a symplectic structure of the former. 

This is exemplified most clearly in the theory of coherent states, where one is dealing 
with the embedding of some classical space as a submanifold of 'H or projective Hilbert 
space P'H. Consider, for instance, the case of the coherent states of a harmonic oscillator 
x = L W :  

) (1) 
1 1 

2fi 
exp (;(a + x  . p )  ---(x - 4 ) .  (x - q )  (xlq, P . ( U ) h  = - 

(irfi)"/4 

viewed as a map (q, p., a) E T*B" x R 4 'H. By pulling back the symplectic form of 
7.1 one gets a presymplectic structure on T*Bn x B. Dividing out the null foliation just 
means projecting down to T*B", and the induced symplectic form on T*B" is just the 
canonical one. Moreover, the embedding is equivariant with respect to the natural action 
of the Heisenberg group H ( n )  = B" x W, with its multiplication law 

~ q l l P l . a l ~ ' ~ q 2 . P z , ( y 2 ~ = ~ q l  +q2.Pl+Pz.a1 +az-q1 ' a d  (2) 
on 7i respectively T*B" x Iw: The coherent states are generated from the simple Gaussian 
10,0,0) as 14, p .  a) = p ,  a)lO, O,O), where the representation U8 of H ( n )  is given 
by the operators 

(3) 
This aspect of the states 14, p .  (U), being the orbit of some vector in 7-l under an irreducible 
unitary representation of some 'coherence group', was used by Perelomov as the defining 
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U&. P, 01) = expI(ifi(a + P .x)l exp(-qa/W. 
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property for generalized coherent states. See his monograph 121 for a survey of the vast 
variety of applications of thii concept, ranging from Lie group representation theory to laser 
physics. 

The crucial property of the coherent states 14, p ,  (U) in the context of classical limits is 
that the expectation values of position 4 and momentum j are just q and p. with dispersion 
Aq = Ap = & --f 0. More generally, the expectation values of monomials in d ' s  and 
6's factorize in leading order, e.g. (B"jB) = ( d ) " ( j ) P  + O(R). In this sense, the coherent 
states become concentrated at points in the classical phase space, and a non-commutative 
algebra of quantum observables becomes a commutative algebra of classical observables. 

2. Coherent states and the classical limit 

In his article 131, Yaffe proposed a set of axioms for generalized coherent states abstracted 
from the above observations. We shall consider the following less restrictive but also less 
far reaching situation. 

Let fi be some real parameter varying in a subset of B+ having 0 as an accumulation 
point. Suppose we are given some Lie group G, with Lie algebra P, and a family of unitary 
representations YQ of G on Hilbert spaces ' H h .  G is allowed to be infinitedimensional, 
although we will be somewhat sloppy as far as technicalities are concerned. Denote by 
4 the corresponding representation of on the space ?tr of Cm vectorst for nfi. The 
universal enveloping algebra U(G) of P will be taken as the algebra of observables; see 
e.g. Koch [4] or Landsman [5]. We continue to denote its representation on .H;p by 4. 
Example. Let M be a connected manifold and 7& be the Hilbert space of square integrable 
half densities on M. Take G as the semidirect product Diff(M) xs F(M) of the group of 
diffeomorphisms with the additive group of real-valued functions, with its product rule 

(4) (Hl. fl) 0 (Hz, fd = (4 0 Hz, fi + (Hl)*fZ) 

(the asterisk denotes push-forward), and consider the unitary representation 

This may be viewed as a generalization of the Heisenberg group H(n).  The Lie algebra P 
is the semidirect product X(M) x, F(M) of vector fields on M with functions, with bracket 

(6) KXl. SI), (XZ. Ed1 = ([XI, Xzl, X1g2 - Xzg1). 

Its representation reads 

whence its universal enveloping algebra gets represented by an algebra of differential 
operators. 

Definition A sequence @,, E ?fr of states with 11&11 = 1 will be called coherent, if the 
following axioms are fulfilled 

t If A : C -+ B(H) is a uniw representation, a vector + E H  is d e d  Cm if the function g CT (tln(g)l& is 
in C"(C) for all 9 E H. 
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C.1. For all observables A in U'(g),  the space of elements of degree k, the limit 

h-0 limCfi)'(&I*(A)l&) =: ( J k ( q 4 ) ,  A) (8 )  

exists. 
C.2. The dispersion vanishes in the R + 0 limit, in the sense that 

(J'"U), A E) = (J'@), A ) ( J ' @ ) .  E) VA E Uk(G), E E U'(G). (9) 

Property C.l implies that Jk(q4) is, in fact, a linear functional on U'(G)/U'-'(G), and 
from C.2, it has already been determined by J = J'. Note that if q4 is a coherent sequence 
and g E G,  the transformed sequence g.4 is also coherent, and the map J is Ad-equivariant: 

J ( X ( g )  . 4) Ad:-, (J(4)). (10) 
Two coherent sequences 4, +' will be called equivalent if J(q4) = J($'). Let [@I denote the 
equivalence class of 4 and consider the induced mapping, also denoted J ,  from equivalence 
classes into G*. The orbit Q = G . [q4] which is to serve as 'our classical phase space' may 
thus be seen as a coadjoint orbit in G*. 

Recall now that the representation zfi of G ,on the Hilbert space Xh is a Hamiltonian 
group action, with moment map 

(11) 

This map is equivariant with respect to the coadjoint action of G on p; in particular it 
maps the G-orbit G .4  in Xfi to a coadjoint orbit in p'. 

= 1, and A I ,  A2 E 8. Then %,(A&& may be regarded as 
tangent vectors to PXfi,  and with the symplectic form G,, on PXh one has 

G,,(%(Aih#% +fi(Az)&) = -h ( j 'k (Ai )h .  *fi(Az)h) 

1 
(Ifi(4). A) = ,(4l*fi(A)I4). Ih : 'Hh + G* 

Let 4 E Xfi,with 

1 
2i = - ( & l ~ f i ( ~ A i , A z l ) l 4 )  

= (M4). [A, El). (12) 

Recall the Kirillov-Kostan-Souriau symplectic form of coadjoint orbits U 

~o(z)(A~.z,Az.z)=(~,[Ai,Azl) V Z E O  (13) 

where Ai . z denotes the tangent vector at z corresponding to Ai E G. At least if G is 
finite-dimensional, equation (12) thus says that Ih is a symplectic reduction from G . & 
onto the coadjoint orbit through Ifi(&). Moreover, condition (8) shows that, up to rescaling 
with A,  the family of coadjoint orbits Ifi(G. &) tends towards the coadjoint orbit J ( G .  [#I). 
In order to get the correct semiclassical limit, we are hence forced to let Q = G . [q4] be 
equipped with the symplectic form coming from its identification as a coadjoint orbit. The 
action of the coherence group G on Q will then be by symplectic transformations, and J 
becomes an Ad-equivariant moment map for this action. Finally, from (9). the mapping 
U : U'(G) + F(Q) dual to Jk represents the algebra of observables as a commutative 
algebra of functions on Q. In the infinite-dimensional situation, problems may arise since 
the vectors A . z need not span the whole tangent space to 0 at z .  

In the above example, a coherent sequence may be constructed as follows, imitating the 
harmonic oscillator coherent states. Choose some function S E C w ( M )  such that, for some 
xo E M. 

Im(S) > 0 Im(S)(x) = 0 + x = xo (14) 
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and such that the critical point of Im(S) at xo is non-degenerate. Associated with S is a 
distinguished covector based at xo. namely t o  := dRe(S)(xo). Let p be a positive, compactly 
supported density on M such that xo E supp(p), and consider the orbit through 

4 := Ch exp[(i/fi)Slfi (12  
where Ch z 0 is the normalizing constant. From the stationary phase theorem, the only 
contributions to integrals such as (&, &), (&[AI&) that are mt exponentially small come 
from the point x = xo. Moreover, 

2 
C; J exp ( - ;Im(S(x))b(x)p = ~ x o )  + OCA) 

for all smooth functions b on M. From this, it is not too hard to check properties C.1 and 
C.2, where 

( J ( @ ) ,  (X, g)) = g(xo) + ( t o ,  X ( ~ O ) )  (16) 
Since the action of the coherence group G transforms @ into a coherent state of a similar 
form, one gets, 

( J ( ( H ,  f) .@), (X, g)) = g(H(xo)) + ((T,H-'Y(to) - df(H(xo)). X ( H ( x o ) ) ) ) .  (17) 
On the other hand, 

(18) 
is just the well known action of G on the cotangent bundle T'M (see e.g. [6], p220) and 

(1% 

for all X E W W ,  g E R M ) .  

(H, f) . ( x t U  = ( H ( x ) ,  (W'-')*(t) - df(H(x))) 

( J M ( X ,  $1, (X, g)) = g(x) + (5,  X b ) )  
its moment map. The G-action on T'M is transitive since M is connected. This shows 
that G . [@] is a coherent system, parametrized by the points of Q = T*M considered as 
submanifold of G*. The map U : U ( g )  + F(Q) is the usual principal symbol map for 
&differential operators (see e.g. 17, 81). 

3. Weinstein's symplectic structure on the 'isodrasts' 

If one takes S to be real-valued in (IS), the w m  wave & still satisfies C.1. Assuming 
without loss of generality that Jp = 1, Ck = 1, one finds 

(J. '([@l), (X, g)) = J p(g + X ( S ) )  = @w (g, XI) 

(Jk((U1), A) = / X A )  

(20) 

where L is the graph of 01 := dS : M + T*M, i.e. a Lagrangian submanifold, and 
M 

p = dS,p. More generally, 

(21) 
L 

where U is the principal symbol for elements of U(G)  as defined in the last example. 
Although C.2 is clearly violated for these 'WKB wavefunctions', one can still by to use the 
constmction from the previous section. Equation (21) shows that the equivalence class of 
& is completely determined by dS and p. Hence, Q will be the set of pairs (L, 6) where 
L is the graph of an exaxt I-form on M and 5 a probability density on L. The action 
of G = Diff(M) x, F ( M )  on Q is just the natural push-forward action coming from the 
symplectomorphism group of T'M. A tangent vector to Q at (L ,  8) is a pair ( B ,  W), where 
f3 is an exact 1-form on M and Y is a density on L satisfying sL W = 0. Equivalently, 
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f i  = ~ d h  may be identified with the vertical Hamiltonian vector field U whose Hamiltonian 
is the pull-hack of h to T'M. The corresponding flow is 

In particular, the tangent vector (X, g) (L ,  6)  coming from the action of G is represented 
by the pair 

Suppose that L = graph(dS), as above, and let f i  = ( J M ,  ( X i ,  g i ) )  be the Hamiltonian 
corresponding to (Xi, gi). According to (13). the symplectic form at (L, 6)  should be given 
by the formula 

A = graph@) + A, = graph@ + fp) p + p ,  = p + tY. (22) 

( B ,  W = (d(g + (a3 X)), L~P). (23) 

~ ( ( B I ,  "I), (Bz, W) = w((d(gl + (a, XI)),  *I), td(gz + (a, X2)L "2))  

= (.7l([451), [(XI, n), (XZ, gdl) 

= / (([XI, XZlS)(X) - (xlgz)(x) + (xzgl)(x))P 

=s, 
M 

(Xl(XZ(S) + g2) - XZ(Xl(S) + W ) ) P  

= - J L H ~ ~ Y ~ + ~ H , Y ~  (24) 

where the last step follows by a partial integration. Note that each observable A E U(g) 
gives, via its symbol H = u(A), rise to a Hamiltonian flow on Q, namely 

R L ,  P) = L~HP (3) 

and that the Hamiltonian flow of H on Q is simply the flow induced by the flow of a(A)  
on T"M.  In words, one gets Hamiltonian dynamics on the space of WKB waves. 

The symplectic structure (24) is a special case of the following observation due to 
Weinstein 191. Let (P. w )  be a symplectic manifold, and L be some fixed manifold with 
dimP = 2dimL. Consider the space WA'(P) of all weighted Lagrangian immersions of 
L .  A point of WA'(P) is a pair (i, p )  where i : L + P is Lagrangian, i.e. i*w = 0, and p 
is a probability density on L. Any locally Hamiltonian vector field U on P and any density 
Y on L such that JL Y = 0 give a tangent vector at ( i ,  p ) .  Weinstein calls such a tangent 
vector 'isodrasic' if it corresponds to some globally Hamiltonian vector field U = X,. As 
it tums out, isodrastic tangent vectors define a foliation. Write down the following 2-form 
on the leaves of this foliation: 

The diffeomorphism group Diff(L) acts freely on WFA'(P), thus making WA'(P) 
a principal Diff(L) bundle over the space WA(P) = WA'(P)/Diff(L) of 'weighted 
Lagrangian submanifolds'. It can be shown that 0 is invariant and horizontal with 
respect to the principal action, hence descends to a well defined 2-form on the isodrasts 
of W A ( P )  = WA'(P)/Dif f (L)  which turns out to be closed and non-degenerate. In 
the discussion above, the immersion i was the embedding a = dS of the zero section 
into T'M, and since the Hamiltonians for vi were constant along the cotangent fibration, 
~ ( u I ,  U*) = [HI, Hz] = 0 whence the first term did not appear in (24). 

The symplectomorphism group Smp(P) acts on weighted Lagrangian submanifolds by 
pushing them forward, and it is clear that this lifted action leaves the symplectic form 6 
invariant. Moreover, Hamiltonian vector fields on P give rise to Hamiltonian vector fields 
on W h ( P ) ,  with lifted Hamiltonian given by equation (25). 
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4. Sternberg's phase space as a coherent system 

Our next example will be classical minimal coupling, as discovered by Sternberg [6, lo]. 
The basic data of Sternberg's model for the motion of a classical particle with internal 

degrees of freedom, coupled to a gauge field, are a principal bundle p : P -+ M with 
structure group K and an orbit U of the coadjoint action of K on K'. Recall that if X is a 
manifold on which K acts by diffeomorphisms, the space of orbits P XK X := (P x X ) / K  
for the diagonal action g . ( p .  x )  = (pg - ' ,  g . x )  is a smooth fibre bundle over M with 
typical fibre X. It is called an associated bundle and denoted P XK X .  

If K is compact, the Bod-Weil-Bott theorem gives a 1:l correspondence between 
integral coadjoint orbits and irreducible representations. so at least in this case there is 
some motivation to interpret U as a 'charge type'. Let 00 denote the symplectic structure 
(13) on U and recall that the embedding J0 : U -+ K" is a moment map for the K-action. 

Sternberg's phase space is the associated bundle 

0 --f z := P: XK 0 -+ T'M (27) 

where P E  -+ T*M denotes the pull-back of P -+ M. The additional phase-space 
dimensions account for the internal degrees of freedom. Note that the fibres of Z are 
symplectic manifolds in a natural way. Using a connection and the corresponding vertical 
projection, one may extend their symplectic smcture to obtain a 2-form 60 on 2. Adding 
the pull-back of the symplectic form OM on T'M renders a non-degenerate 2-form on Z 
which, unfortunately, is not closed in general. It was discovered by Stemberg that if the 
connection comes from a principal connection (gauge field) on P ,  this can be remedied by 
adding a term involving the curvature: 

(28) 

Here, & : P X K  U + P X K  IC* is induced by the (equivariant) moment map J, the 
curvature F is considered as a 2-form on M with values in P XK IC, and some obvious 
pull-backs to Z have been omitted for convenience of notation. 'Minimal coupling' of a 
Hamiltonian defined on T'M is achieved by pulling it back to Z. Hence, the gauge field 
enters the equations of motion via a modification of the symplectic structure. 

In the case of electrodynamics, K = U(l), the orbit U is just a point e (charge), the 
associated bundle can be identified with T'M, and wz = o ~ + e F ,  where F is the curvature 
(field strength) of the magnetic field. 

We shall now show that, under the assumption that K is compact and U is integral, 
Sternberg's symplectic form may be derived by taking the classical limit of a corresponding 
quantum system. 

Consider first the case where M is a point, so that Z is simply a coadjoint orbit U. 
This situation was discussed in a similar context by Simon [ll].  Let U : K x V -+ V 
be an irreducible finite-dimensional unitary representation. Let A be its maximal weight 
with respect to some choice of a maximal torus and U E V the maximal weight vector, 
(U, U) = 1, and let [U] be the point in P ( V )  corresponding to U. Recall (see e.g. [6]) that 
among the K-orbits in P(V) ,  there is a unique one that is a symplectic and complex (i.e. 
Kiihler) submanifold of P ( V ) ,  and this is precisely the orbit U' = K '[U]. The moment map 
for this action is a symplectomorphism from K . [U] onto an integral coadjoint orbit 0, and 
this is just the orbit from which the representation is reconstructed via Borel-Weil-Bott. 

Now, the irreducible representation with maximal weight NA (N E N) may be realized 
as a subrepresentation of UeN,  and ueN becomes a maximal weight vector. Denote this 

0 2  = O M  f (50 + (J0, F ) .  
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representation by (Uh, Vh), where A-' = N = 1,2, . . . . Letting &, := ueN, one finds for 
AI, ..., Aw E K  

(hIoh(Ai ... A d [ & )  = NX(ulAilv) ... (ulAtlu)+O(N'-') 

(J([@1)3 A )  = i(VlU(A)lu) (30) 
parametrized by the orbit 0. 

For the general situation, we use a twisted version of the extremal cases where M is just 
a p in t  and where the representation is trivial, i.e. where 2 = T'M. Form the associated 
bundles Eh := P XG 6, along with their Hermitean fibre metrics (., .) inherited from the 
inner product on v h .  One has an inner product on the space of Eh-valued half densities on 
M: 

(2% 

whence &, renders a coherent system with 

be the completion of the space of square-integrable &-valued half densities. The 
automorphism group Aut(P), i.e. the group of all diffeomorphisms of P commuting with 
the K-action, acts on sections of Eh according to 

H*(<)  = H c c I? (33) 
. where I? E Diff(M) is the induced diffeomorphism of M, and on half-densities by push 

forward via I?. With this action, we get a unitary representation zfi of the semidirect product 
G = Aut(P) x, F ( M )  on ?fa: 

(34) 
Using a principal connection on P, the Lie algebra aut(P) of the automorphism group 

may be written as a product aut(P) = gau(P) x X(M), corresponding to a decomposition 
into a vertical and horizontal part. Here, gau(P) is the Lie algebra of Gau(P), the group of 
all automorphism of P inducing the identity on M. Elements of the gauge algebra gau(P) 
will be interpreted as sections of the associated bundle P XK K in what follows. An easy 
computation shows that the Lie bracket on '2 = (gau(P) x X(M)) xs F ( M )  is 

rm ((H, f))@ = exp[-(i/fi)fl&#. 

[(Cl, x1, gd, ( 0 2 ,  xz, gz)l 
= ( b l ,  021 + vx,, - VXPI + FWI. XZ)[Xl, Xzl, XI& - Xzg1). (35) 

The infinitesimal version of (34) reads 

(36) 

where V X ( ~  8 P) := 0 x 5  8 p + 5 ~ L x P .  
A coherent series for 7-l~ can be constructed as follows. Let W be the pre-image of 0' 

in V .  Choose a compactly supported section < E sec(P X K  W) satisfying (3 ,  < 1, 
with equality only at a distinguished point x = XO. Suppose, moreover, that the critical 
point of -log(<, 5 )  at x = xo is non-degenerate. For fi-' = N = 1.2,. . . , we now define 

i A f i  
%(U, x, g)@ = --(g@ f i  + ;Ox@ - TU*@)  

&, = CnF@N.Jij (37) 
where p i s  a positive density on M not vanishing at xo and CA is the normalizing constant. 
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The proof that this yields indeed a coherent system goes just like in the L z ( M )  situation. 
One has to study the asymptotics of 

s,(4> ITh(u, x, d4) (38) 

as fi -+ 0. From 

one finds, using the stationary phase to determine the leading term in (&l(u, X, g)l&) for 
fi = N-' + 0, that we must have 

(J (4 ) ,  (0. X, 8)) = ( J d x o ,  t o ) ,  (X. g)) + ( h o ) ,  U). 

Here, is the covector at xo defined by (CO, X(x0) )  = -i(<, V , y ( ) ( x ~ )  for all X E X ( M ) ,  
and zo is the point of P X K  U c P X K  IC' defined by (zo, u(x0)) = -i(<, u*<)(xo) for all 
U E gau(P) = sec(P xx IC). 

Moreover, the action of (H, f )  E Aut(P) x,F(M) transforms 4 into a coherent series 
of a similar form. It hence follows that the G-orbit through [@I is parametrized by the 
points of Sternberg's phase space Z = Ps XK 0. According to section 2, the coherent state 
construction leads to a symplectic structure on Z ,  where the action of Aut(P) x, F(M) 
becomes Hamiltonian and has J as its moment map. Note that the action of Aut(P) on Z 
depends on the choice of a connection on P. One observes, in particular, that the action of 
Gaup) does not, in general, preserve the fibred structure of Z. 

In fact, the action of Aut(P) on Z looks much simpler in the following description 
of Z as a symplectically reduced space, due to Weinstein [12]. Consider the left action 
of K on P given by g . p := pg-' .  The lift of this action to T'P is Hamiltonian, with 
Ad-equivariant moment map 

1 
( J P ( P ,  n), h) = - ( x . ~ P ( P ) )  

where hp(p) = a/atl,=o(p exp(rh)) is the fundamental vector field corresponding to h E IC. 
The product T*P x U is hence a Hamiltonian K-space with moment map J j  + J . ,  Form 
the reduced space 

(T*P)o = (J; + Jo)-'(O)/K. (39) 
A connection on P induces a projection K : T*P + T'M which is dual to the horizontal 
lifts T,(,lM + T,P. Since K is constant along the K-orbits it descends to a projection 
(T*P)o + T*M making (T'P). into a symplectic fibre bundle. As it turns out, this fibre 
bundle is symplectically isomorphic to Z, the isomorphism being given by 

(T*P)o + Z = Pn XK 0 K . ( p .  z; q )  + K . ( ~ ( p ,  n), p ;  4). (40) 
Now, the semidirect product Aut(P)x,F(M) acts on T*P as asubgroup of Diff(P)xS3(P) 
and has an Ad-equivariant moment map J; : T*P + (aut(P) x, &VI))*. It is readily 
checked that J; is constant along the K-orbits and J j  is constant along the Aut(P) x,F(M)- 
orbits. The action therefore descends to a symplectic action on (T*P)o E 2, with some 
equivariant moment map. We claim that this moment map is equal to JZ above. Let U' be 
the equivariant mapping P + IC corresponding to U E gau(P) = sec(P X K I C ) ,  equivalently 
viewed as an invariant vertical vector field on P. 

The moment map for the G-action on T'P reads 

( J ~ ( P ,  R), (0, X, 8)) = (a, g(~)) + (Jnr(x.CL (X g)) 
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where ( x ,  t )  = KIP, x ) .  But on (!; + Jo)-’(O), 
(JT,U(P)) = - ( J ; ( P , r h 6 ( P ) )  = (Jo(d.e(P)) = ( 7 o ( z ) , u ( x ) ) .  

To summarize: 

Theorem I .  A connection on P gives rise to a natural Hamiltonian action of Aur(P) x , F ( M )  
on Sternberg’s phase space Z = P X K  0, with equivariant moment map 

(Jz ,  ( 0 ,  X,g)) = (JM,  (X,g)) + ( & , U ) .  

(U, X, g)z = Lift(XpM + gr.M) + 60 - (&, i(X)F + VU)’ .  

(41) 

(42) 

The Hamiltonian vector field on Z corresponding to (U, X, g) is given by the formula 

Here, ‘Lift’ is the horizontal lift with respect to the connection, X7.M + g p M  is the 
Hamiltonian vector field on T’M generated by (X, g), Eo is the vertical vector field on Z 
induced by the infinitesimal action of U E gau(P), and is the map identifying I-forms 
on T*M with vector fields by means of the symplectic form. 

Proof: It remains to prove (42). One has to show that [(U, X, g)zoz = d(JZ, (U, X, g)). 
By definition of wz, 

[(Lift(Xr.M + gr*M))wz =Or*,  + gr*M)wM + (jM, GW) 

= (Y, [(X)F) 

= d(Jnr, (X, g)) + (j, W F )  
r ( X ) F ) ’ ) o ,  = L( ( . f ,  L(X)F))% 

(since (j, L ( X ) F ) ~  is tangent to the fibres of P’ X K  0 + P X X  0). The vector field 60 
can be obtained by regarding ( & , U )  as a Hamiltonian on the fibres. Thus 

is the vertical part of d(&, U ) .  On the other hand, 
@o)w = 

I ( (& ,  Vu)C)wz = (Yo. Vu) 

is its horizontal part. Collecting the terms finishes the proof. 
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